Introduction

The overarching goal of this workflow is to show Bench users how they may use their
understanding of a complex protein-protein interface to generate specificity variants on that
sequence, yielding orthogonal interfaces. To illustrate this general principle, this workflow
describes the specific challenge of creating bispecific antibodies. One computational approach to
this problem is described in the 2014 paper in Nature Biotechnology titled “Generation of
bispecific IgG antibodies by structure-based design of an orthogonal Fab interface.” In this
workflow, we reimplement its basic ideas using Bench, rather than Rosetta. Within this context,
we will examine two strategies for creating new orthogonal interfaces based on knob-hole
mutagenesis and a charge-pairing strategy.

Scientific Background
The scientific aim of this workflow is to obtain sequences for two sets of antibody heavy and

light chains that, when co-expressed, will pair specifically to form a bispecific antibody.
Ordinarily, coexpression of mixed heavy and light chains results in some mis-assembly products,
to the point that many researchers have avoided this particular strategy to create bispecific
antibodies altogether. This workflow describes a method to prevent mis-association of heavy and
light chains by designing an orthogonal interface. There are two distinct interfaces where one
may wish to install mutations: the CH1/CL interface, which is part of the antibody’s ‘constant
region’, and the VH/VL interface, which is part of the variable region. Orthogonalizing the CH3
interfaces is also necessary, but outside the scope of this workflow; the same ideas can (and
have) been used (Leaver-Fay et al., 2016).

In this example, we are starting from a crystal structure of the monoclonal antibody we
would like to orthogonalize, PGT128, which is a broadly-neutralizing HIV-1 antibody. This
method requires that you have a crystal structure to start with. [This method could also begin
from a high quality antibody model, but in this particular workflow and publication, a crystal
structure is used.]

Workflow

Part One

First, we make two constant region redesigns that ought to be bispecific against the wild type:
1. In Bench, fetch 3TV3. This structure contains the constant region of the heavy (H) and

light (L) chains. This PDB also contains the CH3 interface, where we won’t be making any
mutations, so for the purpose of this workflow we recommend removing it (as we have <here>).

2. Run ‘prepare’, producing a single decoy.

Y/ CAD

¥ Collections (=3

X, Structure Loader

(D CH1CL 3TV3 start # D Structure Score
= 1_CHIGCL prep

(3 CRD2 v
[CRD2_cross_ch1mut_cIWT

[CRD2_cross_ch1WT_cIMUT

(02_CRDI_d nSOUT

(2 CRD1_cross_ch1WT_cIMUT

(3 CRD1_cross_ch1MUT_cIWT

[CH1CL_comparator

[Design_CRD1_positions

@ structure 1 -265.51

¥ Selectors

CRD1_tot
CRD2
CRD1+2(color)
CRD1_repack
CRD1_chargepair

& Trash | Archive

E1_CHICL_prep | Selected:1 1 structure(

Backbol
Torsion

Lennard-Jones

-629.71 -6.30

Compare

Solvation

37133

& Download selected

Hydrogen Bond

-190.69

¥ Actions

<+ Prepare <4 Repack < Design

4 Minimize | 4 Relax

=+ Loop Rebuild

Task Updated
design 21 amonth
prepare 20 2 months

repack 19 Zmonths..

prepare 18 2 months

prepare 17 2months...

prepare 16 2 month:

prepare 15 2 menths.,

design 14 2 months.

design 13 2months...
prepare 12 2 months.
prepare 11 2months.
prepare 10 2 months.
design9 2months
design8 2 months
prepare 7 2 months

prepare 6 2 months

P 0 S LS S S S G S SHEC SR TS R & S SR S
E E

desian5 2 months.

¥ Metrics
+ DDG

This panel shows results of the metrics you
calculated. You don't have any metrics
calculated yet

3. Set up a design simulation starting from the prepared structure to install the mutation
pattern of CRD1 (K129D, L135F on chain L; D146K, V190F, F174T on chain H).These design
simulations should produce multiple decoys, perhaps 20.

¥ CAD
¥ Collections

X, Structure Loader (= 2_CRD1_design50UT |

3 CHICL3TVA start # O Structure
[1_CH1CL_prep

v @ structure 1

> 2_CRD1_design50UT
[CRD1_cross_ch1WT_cIMUT
() CRD1_cross_ch1MUT_cIWT
[CHICL_comparator

([Design_CRD1_positions

Residues ~

structure 1

v Selectors

CRD1_tot

CRDZ
CRD1+2(color)
CRD1_repack
CRD1_chargepair
@ Trash i Archive

Backbone
Torsion

RMSD Lennard-Jones

0.04 -615.84 -14.23

o e

Sidechain
Torsion

140.54

Compare.

Solvation

364.83

& Download selected

Hydrogen Bond

-188.34

1 6 11 16 21 26 31 36 41 51 56 66 71 76 81 91 9
GQPKAAPSVTLFPPSSEELQANDATLVCF | SDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEK

ture Viewer

¥ Actions

4 Prepare 4 Repack = Design

< Minimize = < Relax

4 Loop Rebuild

repack 19 Z montns.

prepare 18 2 months...

prepare 17 2 months.

prepare 16 2 months...

prepare 15 2 months.
design14 2 months.
design 13 2 months.
prepare 12 2 months..
prepare 11 2 months..
prepare 10 2 months.

2 months...

design 9

design8 2 months...

prepare 7 2 months...

prepare 6 2 months.

design5 2 months.

=

design4 2 months...

oE
&l

prepare3 2 months...

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

prepare2 2 months

¥ Metrics
+ DDG

This panel shows results of the metrics you
calculated. You don't have any metrics
calculated yet.

4. Set up a design simulation starting from the prepared structure to install the mutation
pattern of CRD2 (S176W, L135Y on chain L; F174G, H172A on chain H). These design
simulations should produce multiple decoys, perhaps 20.

5. Run ‘prepare’ on the best-scoring design results for each of the simulations in (3) and (4).
¥/ CAD

¥ Collections & CF ¥ Actions

X, Structure Loader Se Ooutof 1 structure(s) | Load i Compare

[CH1CL 3TV3 start Structure Score Lennard-Jones Backbone Sidechain Solvation Hydrogen Bond
[1_CHICL_prep Torsion Torsion
= CRD2 @ structure 1 -293.96 -612.10 -1471 13831 36185 -185.01
(CFCRDE G s ChTa T Please select at least 1 structure to create
3 CRD2_cross_ch1WT_cIMUT an action.

designSOUT
[CRD1 s_ch1WT_cIMUT
[0 CRD1_cross_ch1MUT_cIWT SRURTAE

Residues = Su @ =

3 CH1CL_comparator prepare 17 2 months...
3 Design_GRD1_positions prepare 16 2 months...

fepack 19 Zmonths..

prepare 18 2 months.,

¥ Selectors > $ prepare 15 2 months...

BB &

design14 2 months

design13 2 months

B &

CRD1_tot
CRD2

CRD1+2(color)
CRD1_repack = =2 At prepare 10 2 months...

prepare 12 2 months

prepare 11 2 months..

&

El o B I Bl Bl RI M
B ® @

CRD1_chargepair . = design9 Zmonths.

5 =

@ Trash [Archive) 1 design8 2months...

]
(=]

prepare 7 2 months..

5 =

prepare 6 2 months,

IR SR S GG S < G S, S O e

E B E
b=

design5 2 months
¥ Metrics

Please select 1 structure to run this metric.

This panel shows results of the metrics you
calculated. You don't have any metrics
calculated yet

6. Set up design-and-prepare simulations for each of the cross-products above. For example,
to model the complex between wild-type light chain and CRD1 heavy chain, we need to make
mutations D146K, V190F, F174T on chain H.

Y/ CAD

¥ Collections J ¥ Actions
X, Structure Loader = CRD1_cross_ch1WT_cIMUT 1 Compare

CJ CHICL 3TV3 start # O Structure RMSD ard- acl Sidechain Solvation Hydrogen Bond
£31_CHICL_prep s Torsion
3 CRD2 i @ structure 1 0.05 -610. -15.0 141.22 361.36 -185.87
[0 CRD2_cross_chTmut_cIWT Please select at least 1 structure to create.
(3 CRD2_cross_ch1WT_cIMUT an action.

repack 19 2 montns. HE
prepare 18 2 months..

[0 CH1CL_comparator prepare 17 2 months..
[Design_CRD1_positions prepare 16 2 months.

v Selectors J prepare 15 2 months...

design14 2 months..

design13 2 months
CRD_tot
CRD2
CRD1+2{color)
CRD_repack
CRD1_chargepair 1 V | N design9 2 months.
iy Trash [Archive — 7 b\ design8 2 months...

prepare 12 2 months...
prepare 11 2 months...

prepare 10 2 months..

prepare7 2 months..

prepare 6 2 months.

COME Sl SRS SRR S -GG S G SR SR ST A S i 4

design5 2 months.. - Bc
¥ Metrics

Please select 1 structure to run this metric.

This panel shows results of the metrics you
calculated. You don't have any metrics
calculated yet.

7. Repack the native structure (20 decoys) and ‘prepare’ the top few decoys as above to
obtain a wild-type score that is comparable to the above.

8. Compare the energies of the wild-type and the redesigns against the cross-interfaces. The
wildtype and CRD1 should both have energies of about -296, with its cross-interfaces scoring
-293 and -291; CRD2 has an energy of -294 and its cross-interfaces score -293 and -273.

Part Two
Second, we make two variable region redesigns that ought to be bispecific against each other:

1. In Bench, fetch 4LLU. This structure contains the Fab region of the heavy (H) and light
(L) chains. It actually contains two copies, so you can either apply the following operations to
each chain and divide any resulting energies by two, or you can manually remove two chains and
then proceed with that PDB file. The latter method will run much faster, so we will assume that
you have removed chains C and D in a text editor.

¥ CAD

¥ Collections
X, Structure Loader

[0 4LLU start # O
£ 4LLU_prepared

([design 3 results v
(3 minimize 4 results

o 4lld

(D relax 7 results

v Selectors

Selector 2
38_39_and_neighbors
@ Trash i Archive

B> 4LLU_prepared |

Structure

@ structure 1

& 4LLUpr

Run ‘prepare’, producing a single decoy.

x

| Loadedin 1

RMSD Lennard-Jones

Torsion

0.08 -2740.34 -21.91

Backbone

Sidechain

Compare

Solvation

1682.27

& Download selected

Hydrogen Bond

-864.53

¥ Actions

+ Prepare

+ Minimize

Task
design 9
design 8
relax 7
design 6
minimize 4

design 3

prepare 1

> Metrics

+ Repack

+ Relax

Updated
amonth a..
2 months .
2 months ..
2 months ...
2 months ...

2 months ..

2 months ..

= Design

3. Set up a design simulation starting from the prepared structure to install the mutation
pattern of VRD1 (D1R, Q38D on chain B; R63E, Q39K on chain A). These design simulations
should produce multiple decoys, perhaps 20.

Y/ CAD

¥ Collections
&, Structure Loader

[4LLU_start 2 O
[0 4LLU_prepared

E= design 3 results

3 minimize 4 results

O 4iid

[relax 7 results

¥ Selectors

Selector 2
38_39_and_neighbors
w Trash [l Archive

structure 17

= design 3 results

Structure

structure 1
structure 2
structure 3
structure 5

structure 4

elected: 1 outof

Score

-753.18
-784.41
-781.46
-772.89
77411

B> design
1

Backbone
Torsion

Lennard-Jones.

354.10 -21.68
-2389.73

-2396.24

-21.68

-2373.33

-2372.99

a4 46
RKAPGKGLEWV,

Sidechain
Torsion

72412
723.78
724.69
722.89

Compare

Solvation

1628.53
1631.34
1641.33
1625.96
1629.79

& Download selected

Hydrogen Bond

-823.52

-820.32

v Actions
+ Prepare
+ Minimize

Task
design 9
design 8
relax 7
design 6
minimize 4
design 3
relax 2

prepare 1

» Metrics

+ Repack

+ Relax

Updated
amonth a
2months ...
2 months
2months ..
2months ...
2months
2 months

2 months ...

4 Design

4. Set up a design simulation starting from the prepared structure to install the mutation
pattern of VRD2 (Q38R on chain B, Q39Y on chain A). These design simulations should
produce multiple decoys, perhaps 20.

5. Run ‘prepare’ on the best-scoring design results for each of the simulations in (3) and (4).

6. Set up design-and-prepare simulations for each of the cross-products above. For example,
to model the complex between VRD1 light chain and VRD2 heavy chain, we need to make
mutations D1R, Q38D on chains B and Q39Y on chains A. (This produces an anion-anion
charge pair and an anion-pi interaction.)

7. Compare the energy of the desired dimers (VRD1/VRD1; VRD2/VRD?2) to the
cross-products.

Part Three

Third, we show how to use Bench to create new specificity mediating mutations using the
knob-in-hole or charge-swapping strategy. Though in the first two sections we illustrated how to
recapitulate and support mutations obtained through expert knowledge, here we establish how
one might pick a set of mutations over another by measuring for specificity.

1. Load the trimmed 4LLU PDB we provided previously.
2. Run ‘prepare’, producing a single decoy.

3. Locate a charge pair at the interface; for this workflow, suppose you located D1 on chain
B and R62 on chain A.

4. Set up a selector that includes those two residues and their immediate neighbors.

5. Using a design simulation that repacks those residues’ neighbors, force a mutation to one
side of the interface to match the charge of the other side -- for the purpose of this
workflow, demand that D1 mutate to either K or R. (Do not permit it to remain D or E.)

6. Run ‘prepare’ on the design results and compare its score to the prepared wildtype
structure to confirm that the mismatched charges give a poor score. Pick the
worse-scoring sequence of the resulting options.

7. Using the same selector, applied to the design result from step 5, set up a similar design
simulation, to demand that R62 mutate to either D or E.

8. Run ‘prepare’ on the design results and compare its score to the prepared wildtype
structure to confirm that the swapped charges give a good score. Pick the best-scoring
sequence of the resulting options.

FAQ
Q: How can I identify sets of ‘complementary’ mutations that force this bispecific phenomenon?

A: To review, the heterodimerization problem works like this: given one sequence A/B, generate
a related new sequence A’/B’ such that the complexes A/B and A’/B’ are greatly favored over
formation of A/B’ or A’/B. Two straightforward strategies for generating these new sequences
can be implemented in Bench. First, you may use Bench to find locations where well-oriented
hydrogen bonding interactions or charge pairs are anchoring an interface together, and make
simple pairs of mutations on either side, as we show in Part Three. For example, if A/B have an
E/K charge pair, swapping to give A’/B’ a K/E charge pair should disfavor the A’/B complex
(K/K) as well as the A/B’ complex (E/E). Second, you may conduct ‘mutation-rescue’
simulations intended to perturb the interface with more aggressive mutations, doing this with
large/small amino acid alterations is the classic “knobs in hole” approach to interface
engineering (see for example Ridgway JB et al., Protein Eng, 1996). To wit — suppose you force
a mutation that introduces a ‘bump’ at the A/B interface, on sequence A. This mutation is
unfavorable; it destabilizes the A/B interface to form a poorer A’/B interface. Then, you may set
up a design simulation on the interface sequence of B to ‘rescue’ good binding to produce A’/B’.
Finally, you may use the procedure outlined above in Parts One and Two to validate your
predictions about how these complementary mutations should behave.

Q: Why is the final step for the constant region redesigns important for quantitative energy
comparison — why can’t I just compare the CRD1 and CRD?2 scores to the wild type score
obtained in the second step (initial prepare)?

A: We always want to compare structural models to which the same amount of sampling and
optimization have been applied. The design results have been prepared, then globally repacked,
then prepared again. Comparing to the original structure that has just been prepared once and
experienced no global repack is ‘unfair’.

